Congruences for Overpartition K-tuples

نویسنده

  • Shi-Chao Chen
چکیده

An overpartition of the nonnegative integer n is a non-increasing sequence of natural numbers whose sum is n in which the first occurrence of a number may be overlined. Let k ≥ 1 be an integer. An overpartition k-tuple of a positive integer n is a k-tuple of overpartitions wherein all listed parts sum to n. Let pk(n) be the number of overpartition k-tuples of n. In this paper, we will give a short proof of Keister, Sellers and Vary’s theorem on congruences for pk(n) modulo powers of 2. We also obtain some congruences for pk(n) modulo prime ! and integer 2k.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Arithmetic Properties of Overpartition K -tuples

Abstract Recently, Lovejoy introduced the construct of overpartition pairs which are a natural generalization of overpartitions. Here we generalize that idea to overpartition ktuples and prove several congruences related to them. We denote the number of overpartition k-tuples of a positive integer n by pk(n) and prove, for example, that for all n ≥ 0, pt−1(tn + r) ≡ 0 (mod t) where t is prime a...

متن کامل

Congruences for Hyper M-ary Overpartition Functions

We discuss a new restricted m-ary overpartition function hm(n), which is the number of hyper m-ary overpartitions of n, such that each power of m is allowed to be used at most m times as a non-overlined part. In this note we use generating function dissections to prove the following family of congruences for all n ≥ 0, m ≥ 4, j ≥ 0, 3 ≤ k ≤ m− 1, and t ≥ 1: hm(mn + mj+t−1k + · · · + mk) ≡ 0(mod...

متن کامل

Arithmetic Properties of Overpartition Pairs into Odd Parts

In this work, we investigate various arithmetic properties of the function ppo(n), the number of overpartition pairs of n into odd parts. We obtain a number of Ramanujan type congruences modulo small powers of 2 for ppo(n). For a fixed positive integer k, we further show that ppo(n) is divisible by 2 k for almost all n. We also find several infinite families of congruences for ppo(n) modulo 3 a...

متن کامل

Arithmetic Properties of Overpartition Pairs

Abstract. Bringmann and Lovejoy introduced a rank for overpartition pairs and investigated its role in congruence properties of pp(n), the number of overpartition pairs of n. In particular, they applied the theory of Klein forms to show that there exist many Ramanujan-type congruences for pp(n). In this paper, we derive two Ramanujantype identities and some explicit congruences for pp(n). Moreo...

متن کامل

Rank and Congruences for Overpartition Pairs

The rank of an overpartition pair is a generalization of Dyson’s rank of a partition. The purpose of this paper is to investigate the role that this statistic plays in the congruence properties of pp(n), the number of overpartition pairs of n. Some generating functions and identities involving this rank are also presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010